Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Infect Public Health ; 16(1): 42-54, 2022 Nov 19.
Article in English | MEDLINE | ID: covidwho-2239727

ABSTRACT

BACKGROUND: The novel coronavirus disease-2019 (COVID-19) that emerged in China, is an extremely contagious and pathogenic viral infection caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) that has sparked a global pandemic. The few and limited availability of approved therapeutic agents or vaccines is of great concern. Urgently, Remdesivir, Nirmatrelvir, Molnupiravir, and some phytochemicals including polyphenol, flavonoid, alkaloid, and triterpenoid are applied to develop as repurposing drugs against the SARS-CoV-2 invasion. METHODS: This study was conducted to perform molecular docking and absorption, distribution, metabolism, excretion and toxicity (ADMET) analysis of the potential phytocompounds and repurposing drugs against three targets of SARS-CoV-2 proteins (RNA dependent RNA polymerase, RdRp, Endoribonclease, S-protein of ACE2-RBD). RESULTS: The docking data illustrated Arachidonic acid, Rutin, Quercetin, and Curcumin were highly bound with coronavirus polyprotein replicase and Ebolavirus envelope protein. Furthermore, anti- Ebolavirus molecule Remedesivir, anti-HIV molecule Chloroquine, and Darunavir were repurposed with coronavirus polyprotein replicase as well as Ebolavirus envelope protein. The strongest binding interaction of each targets are Rutin with RdRp, Endoribonclease with Amentoflavone, and ACE2-RBD with Epigallocatechin gallate. CONCLUSIONS: Taken altogether, these results shed a light on that phytocompounds have a therapeutic potential for the treatment of anti-SARS-CoV-2 may base on multi-target effects or cocktail formulation for blocking viral infection through invasion/activation, transcription/reproduction, and posttranslational cleavage to battle COVID-19 pandemic.

2.
Laryngoscope Investig Otolaryngol ; 7(3): 790-798, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-2003629

ABSTRACT

Objectives: The aim of this study was to explore the prevalence and risk factors in public kindergarten and elementary school teachers in the Jimei district in Xiamen. We took particular interest in the relationship between work-related factors and voice disorders. Study Design: A cross-sectional investigation; a General Investigation. Methods: This study was conducted from September 14 to 18, 2020 at public kindergarten and elementary schools in Xiamen, China. A total of 3140 teachers were separated into a perceived voice disorder group (PVD) and no perceived voice disorder group (NPVD) according to the Voice Handicap Index. The chi-square test was applied to explore the differences between the PVD and NPVD groups. The univariate logistic regression models were used to identify the risk factors in terms of unadjusted odds ratio and 95% confidence interval. Stepwise logistic regression was then used to ascertain independent determinants. Results: We found that the prevalence of PVD was 47.52%. The results showed that risk factors of PVD included being female (OR = 1.574), middle-rank technical title and higher (OR = 2.199), continuous lecturing for more than 3 classes (OR = 3.034), lectured more than 10 classes a week (OR = 1.436) and taught art or physical education (OR = 1.742). Conclusions: Teachers' work-related characteristics were associated with PVD. This proves that a preventive voice care program for teachers, administered by the school or education bureau, is urgent. This could include components such as the reasonable arrangement of timetables and recruitment of a sufficient number of kindergarten and elementary school teachers.Level of evidence: Case-series.

3.
Int J Mol Sci ; 21(10)2020 May 19.
Article in English | MEDLINE | ID: covidwho-1934080

ABSTRACT

The vast majority of marketed drugs are orally administrated. As such, drug absorption is one of the important drug metabolism and pharmacokinetics parameters that should be assessed in the process of drug discovery and development. A nonlinear quantitative structure-activity relationship (QSAR) model was constructed in this investigation using the novel machine learning-based hierarchical support vector regression (HSVR) scheme to render the extremely complicated relationships between descriptors and intestinal permeability that can take place through various passive diffusion and carrier-mediated active transport routes. The predictions by HSVR were found to be in good agreement with the observed values for the molecules in the training set (n = 53, r2 = 0.93, q CV 2 = 0.84, RMSE = 0.17, s = 0.08), test set (n = 13, q2 = 0.75-0.89, RMSE = 0.26, s = 0.14), and even outlier set (n = 8, q2 = 0.78-0.92, RMSE = 0.19, s = 0.09). The built HSVR model consistently met the most stringent criteria when subjected to various statistical assessments. A mock test also assured the predictivity of HSVR. Consequently, this HSVR model can be adopted to facilitate drug discovery and development.


Subject(s)
Computer Simulation , Intestines/physiology , Support Vector Machine , Animals , Humans , Permeability , Rats , Regression Analysis , Reproducibility of Results
4.
Front Pharmacol ; 13: 863082, 2022.
Article in English | MEDLINE | ID: covidwho-1822399

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is a positive-strand RNA virus, and has rapidly spread worldwide as a pandemic. The vaccines, repurposed drugs, and specific treatments have led to a surge of novel therapies and guidelines nowadays; however, the epidemic of COVID-19 is not yet fully combated and is still in a vital crisis. In repositioning drugs, natural products are gaining attention because of the large therapeutic window and potent antiviral, immunomodulatory, anti-inflammatory, and antioxidant properties. Of note, the predominant curcumoid extracted from turmeric (Curcuma longa L.) including phenolic curcumin influences multiple signaling pathways and has demonstrated to possess anti-inflammatory, antioxidant, antimicrobial, hypoglycemic, wound healing, chemopreventive, chemosensitizing, and radiosensitizing spectrums. In this review, all pieces of current information related to curcumin-used for the treatment and prevention of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection through in vitro, in vivo, and in silico studies, clinical trials, and new formulation designs are retrieved to re-evaluate the applications based on the pharmaceutical efficacy of clinical therapy and to provide deep insights into knowledge and strategy about the curcumin's role as an immune booster, inflammatory modulator, and therapeutic agent against COVID-19. Moreover, this study will also afford a favorable application or approach with evidence based on the drug discovery and development, pharmacology, functional foods, and nutraceuticals for effectively fighting the COVID-19 pandemic.

5.
Biomed Pharmacother ; 141: 111888, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1293595

ABSTRACT

Curcumin, isolated from Curcuma longa L., is a fat-soluble natural compound that can be obtained from ginger plant tuber roots, which accumulative evidences have demonstrated that it can resist viral and microbial infection and has anti-tumor, reduction of blood lipid and blood glucose, antioxidant and removal of free radicals, and is active against numerous disorders various chronic diseases including cardiovascular, pulmonary, neurological and autoimmune diseases. In this article is highlighted the recent evidence of curcuminoids applied in sevral aspects of medical problem particular in COVID-19 pandemics. We have searched several literature databases including MEDLINE (PubMed), EMBASE, the Web of Science, Cochrane Library, Google Scholar, and the ClinicalTrials.gov website via using curcumin and medicinal properties as a keyword. All studies published from the time when the database was established to May 2021 was retrieved. This review article summarizes the growing confirmation for the mechanisms related to curcumin's physiological and pharmacological effects with related target proteins interaction via molecular docking. The purpose is to provide deeper insight and understandings of curcumin's medicinal value in the discovery and development of new drugs. Curcumin could be used in the prevention or therapy of cardiovascular disease, respiratory diseases, cancer, neurodegeneration, infection, and inflammation based on cellular biochemical, physiological regulation, infection suppression and immunomodulation.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antineoplastic Agents/therapeutic use , Antioxidants/therapeutic use , Curcumin/therapeutic use , Animals , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Autoimmune Diseases/drug therapy , Autoimmune Diseases/metabolism , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/metabolism , Curcumin/metabolism , Curcumin/pharmacology , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL